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ABSTRACT: P-glycoprotein (Pgp) is capable of recognizing and
transporting a wide range of chemically diverse compounds in vivo.
Overcoming Pgp-mediated efflux can represent a significant challenge
when penetration into the central nervous system is required or within
the context of developing anticancer therapies. While numerous in
silico models have been developed to predict Pgp-mediated efflux, these
models rely on training sets and are best suited to make interpolations.
Therefore, it is desirable to develop ab initio models that can be used
to predict efflux liabilities. Herein, we present a de novo method that can
be used to predict Pgp-mediated efflux potential for druglike compounds.
A model, which correlates the computed solvation free energy dif-
ferences obtained in water and chloroform with Pgp-mediated efflux
(in logarithmic scale), was successful in predicting Pgp efflux ratios for
a wide range of chemically diverse compounds with a R2 and root-mean-square error of 0.65 and 0.29, respectively.
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P-glycoprotein (Pgp) plays an important role in the in vivo
disposition of a wide range of clinically relevant drugs.1

The impact of Pgp on permeability across the blood−brain barrier
(BBB) has received considerable attention within the drug discovery
community.2 Active efflux by Pgp at the BBB often represents a
significant challenge in the discovery and development of agents
that require central nervous system (CNS) penetration for target
engagement.3,4 In addition, overexpression of Pgp in cancer tumor
cells has been implicated in the development of drug resistance to
anticancer agents.5

Pgp is a promiscuous transporter that is capable of recognizing
and transporting a wide range of chemically diverse structures.6

An X-ray crystal structure of mouse Pgp, which shares 87%
sequence identity with human Pgp, was recently reported.1 This
structure can provide insight toward understanding the mechanism
by which the human Pgp transporter functions. Druglike com-
pounds were hypothesized to be recruited to the Pgp binding
pocket while they are either diffusing through the membrane
or through the intracellular-facing opening.1 Upon binding, the
intracellular-facing state of Pgp undergoes an ATP-dependent
state change that renders it extracellular facing and allows the
substrates to be exported into the extracellular domain (Figure 1).1

Herein, we report our findings, which correlate the susceptibility
of a compound to Pgp-mediated efflux with the free energy
required for a compound to transition from a lipophilic to an
aqueous environment (Figure 2) since the residues surrounding
the Pgp drug binding pocket are mainly hydrophobic and aromatic.
We proposed that a significant element contributing to efflux is

a compound's preference to be in an aqueous-like environment
and (heuristically) hypothesized that Pgp-mediated efflux may be
related to the probability by which a compound will be trans-
ferred from Pgp binding pocket to the extracellular domain.7

Accordingly, Pgp transports druglike compounds to the extra-
cellular domain when there is a strong preference for the
compound to be in an aqueous-like environment. Alternatively,
when the preference to be in the extracellular domain is diminished,
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Figure 1. Proposed mechanism for the efflux of compounds by Pgp
(adapted from ref 1). Neutral compounds were assumed to bind to the
intracellular-facing state. Upon binding, Pgp undergoes an ATP-dependent
state change and releases the compound into the extracellular domain.
We hypothesized that the probability of transferring compounds from
the Pgp binding pocket to the extracellular domain may be used to
predict the Pgp-mediated efflux liability.
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the ability for Pgp to transport compounds to the extracellular
domain is also diminished. This new hypothesis significantly
differs from existing hypotheses about how Pgp binds or
transports druglike compounds, which rely on recognition of
polar functional groups such as amides, hydrogen bond donors,
or acceptors; we speculated that these metrics may be seen as
surrogates for the hydrophilicity of compounds. However, cur-
rent hypothesis does not invalidate any of the literature reported
hypotheses. Because the extracellular-facing state of Pgp is unknown,
we proposed that the relative affinities for the compounds to be in
the Pgp binding pocket (i.e., hydrophobic environment) or in the
extracellular domain (i.e., aqueous-like environment) may be
approximated with solvation free energies computed in chloroform
(GCHCl3) and water (GH2O), respectively (see the Experimental

Procedures for details.) We computed GCHCl3 and GH2O for neutral
species. In cases where compounds contain ionizable functional
groups, such as basic amines or carboxylic acids, we utilized
computed pKa values to estimate the free energy difference
between neutral and ionized forms in an aqueous environment
and corrected the GH2O values with the energy difference obtained
with the expression ΔG = −1.4(pH − pKa). This approximation
allowed us to test the hypothesis outlined in Figure 1 by using
GCHCl3, GH2O, and pKa values computed for druglike compounds.
Solvation free energy differences between water and chloroform

(ΔGH2O−CHCl3) were computed for a diverse set of 282 compounds
and were plotted against the logarithm of net efflux ratio (ER)
(Log[net ER]) in Figure 2 (see the Experimental Procedures
for details.) Net ER was calculated by dividing the ER obtained
in Pgp overexpressing cell lines with the ER obtained in parental
cell lines. There was a sigmoidal relationship between Log[net ER]
and ΔGH2O−CHCl3, and this relationship can be described with eq 1,
where a = −1.17, b = 0.78, c = −13.90, and d = 1.22 (see the
Supporting Information for the relationship observed between
Log[ER] and ΔGH2O−CHCl3). The R2 and root-mean-square
error obtained from such a fit for training (test) set were 0.65
(0.64) and 0.28 (0.29), respectively. Reduced χ2 for this fit
for all of the compounds was 0.9.8 There were 134 and 148
compounds in the training and test sets, respectively. In this
plot, a large negative ΔGH2O−CHCl3 suggests a strong preference
for the compounds to be in an aqueous environment, while a small
negative ΔGH2O−CHCl3 suggests a weaker preference for such media.

The relationship observed in Figure 2 allowed us to classify
compounds into three categories: (i) compounds that are likely
to be Pgp substrates and predicted to be Pgp substrates with
high confidence, ΔGH2O−CHCl3 < 16 kcal/mol (51 compounds);
(ii) compounds that are unlikely to be Pgp substrates and pre-
dicted not to be Pgp substrates with high confidence,ΔGH2O−CHCl3 >
−12 kcal/mol (75 compounds); and (iii) predictions made
with low confidence, −12 < ΔGH2O−CHCl3 < 16 (156 compounds).
The steep relationship observed between Log[net ER] and
ΔGH2O−CHCl3 around −14 kcal/mol limited our ability to make
accurate predictions in this range; the method allowed us to
accurately predict the efflux liability for 45% of the compounds.
It should be noted that the compounds included in this analysis
spanned a wide range of ERs and permeability values. While
a strong correlation between ΔGH2O−CHCl3 and Pgp-mediated
efflux was observed, no such correlation was observed between
ΔGH2O−CHCl3 and permeability, suggesting that the observed
relationship is unique (see the Supporting Information for details).
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Equation 1 was next used to predict the net ER for 12 clinically
relevant drugs (Table 1).9−12 The goal of this exercise was not
to predict the absolute ER but to test the method's ability to
distinguish high efflux compounds from those that would not
be expected to succumb to Pgp-mediated efflux.13 As seen in
Table 1, loratadine, tacrine, and midazolam, drugs reported not
to be Pgp substates, were predicted to have low ERs (≤1.2). In
contrast, compounds that were reported to be substrates for
Pgp were predicted to have higher ERs (1.9−16.7).
Predictions made for labetalol, midazolam, and zolmitriptan

are exemplified in Figure 3. Computed GCHCl3 and GH2O for
labetalol are −6.91 and −20.83 kcal/mol, respectively; this
corresponds to ΔGH2O−CHCl3 of −13.92 kcal/mol. Labetalol has
a basic amine group, and the ACD predicted pKa for this amine
group is 9.3. Because GH2O computed for the neutral drug
underestimates the polarity of labetalol in water, a pKa-based
correction was applied to account for the free energy difference
between the ionized and the netural forms; we obtained a
pKa-corrected solvation free energy difference of −13.92 +
−1.4 × (9.3 − 7.4) = −16.58 kcal/mol. Plugging −16.58
for ΔGH2O−CHCl3 into eq 1 gave a predicted ER (ERpred) of

12.5. Computed GCHCl3 and GH2O for midazolam are −6.91 and
−20.83 kcal/mol, respectively, and gave a ΔGH2O−CHCl3 of
−6.98 kcal/mol and an ERpred of 1.2. The method overestimated
the ER measured for zolmitriptan; we observed that conforma-
tionally flexible molecules with distributed polarity were some-
times predicted incorrectly. The use of conformational ensembles
in calculations can potentially alleviate this problem.
A significant amount of work has been directed toward under-

standing the physicochemical properties or molecular attributes
that are associated with Pgp-mediated efflux of druglike compounds.
Several physicochemical properties have been reported to
correlate with Pgp recognition, including cLog P, topological
polar surface area (TPSA), and the number of hydrogen bond
donors (HBD) and acceptors (HBA).14,15 Net ER data for
compounds that are likely Pgp substrates (as defined by net
ER ≥ 2) and non-Pgp substrates (as defined by net ER < 2)

Figure 2. Relationship observed between net ER (logarithmic scale) and
computed solvation free energy difference, ΔGH2O−CHCl3. The dashed line

is the fit obtained for the data with eq 1. Green, compounds with net
ER < 2; red, compounds with net ER ≥ 2; open circles, training set; and
closed circles, test set.
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were plotted against cLog P, TPSA, HBD, and HBA for the
same set of 282 Amgen compounds (Figure 4). Histograms
given in Figure 4A corroborate the observations reported in the
literature14,15 and can provide empirical guidelines to help
minimize Pgp-mediated efflux. For example, the following
attributes are commonly used to help design low efflux
compounds: the inclusion of <2 HBD, TPSA of <70 Å2, and
cLog P of >3. While these guidelines can be useful in the drug
design process, it is well-known that compounds with the same
physicochemical properties can have substantially different
levels of Pgp-mediated efflux. Furthermore, these relationships

fail to give clear guidelines to medicinal chemists as there are
considerable overlaps between compounds with net ER ≥ 2 and
net ER < 2 across each of the previously mentioned properties
(Figure 4). Additionally, recognition elements required to interact
with certain protein targets often do not align with those that
correlate with low efflux, necessitating the need for a more
refined approach. In addition to the observed relationships
between molecular descriptors and ER, numerous in silico
models have been developed to predict the efflux liability for
druglike compounds.16−23 Most of these models rely on existing
data sets to predict the ER of new compounds based on their
similarity to existing compounds with data. While such models
are very useful in late stage projects when interpolations are
being made, the predictive power of such models becomes
questionable when new chemical space is being explored
and there is little or no existing data to “train” these models.
Recently, ERs of various compounds have been predicted
by using a flexible docking method that makes use of the
intracellular-facing state of the mouse Pgp protein.16 While a
correlation between docking score and logarithm of ERs was
observed, the relevance between the binding score obtained
with the intracellular-facing state and active transport by Pgp
remains to be explored.

Figure 4. Relationships observed between measured Net ER and cLog P, HBD, TPSA, and HBA. Green, compounds with net ER < 2; red,
compounds with net ER ≥ 2. Dashed lines in panel A are fits for the observed histograms.

Table 1. Predicted and Measured ERs for 12 Drug Molecules

drug net ERa ERpred GH2O GCHCl3 pKaACD ΔGH2O−CHCl3 ref

loratadine 0.5 1.2 −10.43 −2.68 −7.75 9
tacrine 1.2 1.1 −12.23 −5.81 −6.42 11
midazolam 0.9−1.0 1.2 −8.81 −1.83 −6.98 9, 11
zolmitriptan 2.5 15.4 −26.04 −10.64 9.5 −15.40 11
prednisone 2.8 7.3 −23.51 −8.57 −14.94 9
prazosin 2.9 11.3 −24.36 −8.20 −16.16 9
loperamide 3.8 1.9 −9.44 −0.32 9.5 −9.12 9
methysergide 4.3 9.7 −21.12 −5.47 7.2 −15.65 11
labetalol 2.4−6.5 12.5 −20.83 −6.91 9.3 −13.92 10
quinidine 7.4 5.3 −15.71 −4.52 9.6 −11.19 9
ritonavir 18.4 16.7 −23.68 2.17 −25.85 9
eletriptan 44.7 11.1 −19.09 −7.18 10.4 −11.91 11

aNet ER was calculated by dividing the ER obtained in Pgp overexpressing cells with the ER obtained in parental cells.

Figure 3. Predicted and measured ERs for labetalol, midazolam, and
zolmitriptan. The in-house measured ER for labetalol is 12, and
literature-reported values range from 2.9 to 6.0.
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In addition to the guidelines mentioned above, several strategies
have also been used to help modulate Pgp-mediated efflux while
maintaining biological activity. For example, in cases where a
HBD is required to maintain key interactions with the bio-
logical target of interest, it has been found that the inclusion of
strategically placed HBAs or steric bulk can serve to mask the
HBD and in doing so mitigate Pgp-mediated efflux liability.24

Although such modifications are made in an attempt to mask
polarity, the TPSAs obtained for both analogues may remain
the same and provide a disconnect between what is experimentally
observed and the probabilistic relationships deduced from plots
like those shown in Figure 4A. Table 2 further illustrates this point
with several pairs of molecular fragments. Each of these pairs has
the same TPSA values but can be differentiated by their calculated
solvation free energies. The pyridone (1)/6-methylpyridone
(2) pair represents a case in which the polarity of the fragment
is aimed to be manipulated with a steric bulk. The 1,3,5-triazine
(3)/1,2,3-triazine (4) pair represents a case in which the polarity is
distributed differently across the fragments. Compound 4 may be
perceived to be more polar due to the close proximity of the hetero-
atoms. Finally, N-methylpicolinamide (5)/N-methylisonicotinamide
(6) represent a pair of compounds wherein the HBD has the
potential to be masked by a hydrogen bond acceptor in 5 but
not in 6.
The pyrazine (7)/pyrimidine (8) pair is another example

that shows that the distribution of polarity can have an impact
on ΔGH2O or ΔGH2O−CHCl3. An analysis of our internal data25

provided 35 pairs of compounds that contain matched
molecular 7/8 pairs with measured ER. Out of these 35 pairs,
26 pyrimidine analogues have higher net ERs than their
matched pyrazine analogues, three pairs have the same net ERs,
and five pyrazine analogues have higher net ERs (net ER8<7).
However, four out of these five pairs with net ER8<7 had net
ERs that are less than 2 and were considered not to be efflux
substrates. We also observed that the pyrimidine analogues, on
average, had 2-fold higher net ERs (see the Supporting Information
for details).
In summary, we have shown that ΔGH2O−CHCl3 can be used as

a de novo descriptor to predict the likely Pgp-mediated efflux
liability for a diverse set of druglike molecules and supports the
hypothesis outlined in this work. The method described herein
can be used to rank order target compounds or make quantitative
predictions upon fitting the ER data to ΔGH2O−CHCl3. Hence, we
believe that it is a useful method for predicting efflux liability for
druglike compounds when there is little or no data available to
guide the medicinal chemistry efforts with in silico models that rely
on training sets. The mechanism by which Pgp recognizes or binds
druglike molecules is beyond the scope of this work, and the
correlation observed between net ER and ΔGH2O−CHCl3 was not
aimed to address this issue.

■ EXPERIMENTAL PROCEDURES
Passive permeability was determined in LLCPK-1 cell monolayers,
while ER (B → A/A → B) was measured in LLCPK-1 cell monolayers
that were transfected with human MDR1. All of the compounds
included in this analysis demonstrated passive permeability [(A → B +
B → A)/2] of >27 nm/s and efflux of <2.8 in the nontransfected cell
line. These measures ensure that the efflux observed in the LLCPK-1
cells transfected with MDR is a robust measurement of efflux mediated
by Pgp. Compounds included in this analysis were selected from six dif-
ferent programs and include 10 different subseries. See the Supporting
Information for tanimoto similarities among all possible molecular pairs.
ERs of the compounds in the data set range from 1 to 94.

GH2O and GCHCl3 were obtained with single point solvation free
energies for the ground state conformations of the compounds ob-
tained from molecular mechanics minimizations with MMFF94x force
field with the Born solvation energies. GH2O and GCHCl3 were computed
with the HF/6-31+G(d) method by using Gaussian 0326 software; this
method was shown to produce accurate solvation free energies.27 The
calculation of solvation free energies for one conformation introduces
errors. To estimate the magnitude of the errors introduced by using
only one molecular mechanics conformation, we calculated the Boltzmann
weighted solvation free energies [for a conformational ensemble obtained
at the B3LYP/6-31G(d) level] for 10 randomly selected compounds. Even
though Boltzmann weighted GH2O and GCHCl3 were different from those
obtained for molecular mechanics obtained ground state conformations,
there was a good correlation when Boltzmann weighted ΔGH2O−CHCl3 was

plotted against ΔGH2O−CHCl3 obtained for molecular mechanics ground
state conformation (see the Supporting Information for details.) The
use of other organic solvents such as benzene and chlorobenzene
produced similar results. We chose to use the ΔGCHCl3 due to the close
proximity of the chloroform dielectric constant to the dielectric con-
stants of the residues surrounding the Pgp binding pocket. The
Supporting Information contains detailed description around the
diversity metrics of the compounds used in this work and the derivation
of the relationship between ER and the computed solvation free energy
differences.
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Permeability vs ER and cLog P relationships, metrics around
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